
J Stat Phys (2008) 130: 387–412
DOI 10.1007/s10955-007-9429-3

Multifractal Nonrigidity of Topological Markov Chains

Luis Barreira · Vitor Saraiva

Received: 4 June 2007 / Accepted: 7 September 2007 / Published online: 3 October 2007
© Springer Science+Business Media, LLC 2007

Abstract Given a multifractal spectrum, we consider the problem of whether it is possible
to recover the potential that originates the spectrum. The affirmative solution of this problem
would correspond to a “multifractal” classification of dynamical systems, i.e., a classifica-
tion solely based on the information given by multifractal spectra. For the entropy spectrum
on topological Markov chains we show that it is possible to have both multifractal rigidity
and multifractal “nonrigidity”, by appropriately varying the Markov chain and the potential
defining the spectrum. The “nonrigidity” even occurs in some generic sense. This strongly
contrasts to the usual opinion among some experts that it should be possible to recover the
potential up to some equivalence relation, at least in some generic sense.

Keywords Multifractal analysis · Multifractal rigidity

1 Introduction

Roughly speaking, the theory of multifractal analysis studies the complexity of the level
sets of invariant local quantities obtained from a dynamical system. For example, we can
consider Birkhoff averages, Lyapunov exponents, pointwise dimensions, or local entropies.
Since the level sets of these quantities are rarely manifolds, in order to measure their com-
plexity it is appropriate to use quantities such as the topological entropy or the Hausdorff
dimension. This gives rise to several multifractal spectra, such as entropy spectra and di-
mension spectra. On the other hand, the theory of multifractal analysis is closely related to
the experimental study of dynamical systems. In particular, the multifractal spectra can be
determined experimentally with an arbitrary precision. Furthermore, the multifractal spectra
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contain information about the dynamical system that may perhaps be used to recover the
dynamics, probably not completely but at least in some equivalence class. We refer to this
question as a multifractal rigidity problem. The theory of multifractal rigidity asks in par-
ticular whether it is possible to use the multifractal spectra to restore the dynamics, again
perhaps up to some equivalence relation, such as cohomology or conjugation by automor-
phisms. We refer to [4] for a related discussion.

Our main objective is to show that, for the model class of topological Markov chains, both
the phenomena of multifractal rigidity and multifractal “nonrigidity” do occur. One of the
main problems of multifractal rigidity is how to effectively recover the local characteristics
of the system, if possible providing some appropriate algorithm. There was some hope that
this could perhaps be effected for a large class of multifractal spectra and several model
classes of hyperbolic dynamical systems. This was supported by former work in [1, 2, 5].
Nevertheless, we will give explicit examples of topological Markov chains for which there
is no multifractal rigidity, even in some generic sense.

In order to briefly describe our results rigorously we recall the notion of entropy spec-
trum (see Sect. 2 for details). We consider topologically mixing one-sided Markov chains
(�+

A ,σ ), associated to a p × p transition matrix A with �+
A ⊂ {1, . . . , p}N, where σ is the

shift map. Given a function ϕ:�+
A → R, the entropy spectrum of ϕ is defined by

E(α) = h

(
σ |

{
x ∈ �+

A : lim
n→∞

1

n

n−1∑
k=0

ϕ(σ kx) = α

})
,

where h(f |Z) is the topological entropy of f on Z (notice that Z need not be compact;
see for example [4] for the definition). For a class of hyperbolic dynamical systems and a
class of sufficiently regular functions (such as Hölder continuous functions) it is possible to
show that:

1. the domain of E is an interval that may reduce to a single point;
2. E is either a delta function, or is analytic and strictly convex (this last alternative occurs if

and only if ϕ is not cohomologous to a constant, in which case the domain is not a single
point; see (7) below).

We refer to [4] for details and references. The main objective of the theory of multifractal
rigidity is to recover as much information as possible about the function ϕ from the entropy
spectrum E , at least up to some equivalence relation. We will say in this paper that two
functions ϕ and ψ are equivalent if

ϕ ◦ τ − ψ = u ◦ σ − u + c (1)

for some automorphism τ :�+
A → �+

A , continuous function u:�+
A → R, and constant c ∈ R

(see Sect. 2.2 for a detailed discussion).
We can now briefly describe our results. Namely, with respect to the equivalence relation

in (1) we show the following:

1. For a function ϕ constant on cylinders of length 2 in �+
A ⊂ {1,2}N there is a strong

multifractal rigidity. Namely, we show that it is possible to completely characterize the
equivalence class of ϕ from the entropy spectrum, except from a particular spectrum for
the full topological Markov chain (in which case there are three possible equivalence
classes). See Sect. 4.2.

2. For a function ϕ constant on cylinders of length 2 in �+
A ⊂ {1,2,3}N, and certain tran-

sition matrices A, there is no multifractal rigidity, even in some generic sense. Namely,
we show that it is impossible to completely characterize the equivalence class of ϕ from
each entropy spectrum, except those spectra in a well-identified family. See Sect. 5.
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We also describe appropriate procedures that allow us to obtain explicitly the equivalence
classes determining a given spectrum.

The content of the paper is as follows. Section 2 contains several basic notions, including
a discussion of the equivalence relation in (1). In Sect. 3 we introduce the class of locally
constant functions, and describe some of its properties. Section 4 is dedicated to the study
of multifractal rigidity, particular for locally constant functions on cylinders of length two
on Markov chains with two symbols. In Sect. 5 we discuss the phenomenon of multifractal
“nonrigidity” for locally constant functions on Markov chains with three symbols.

2 Entropy Spectrum of Gibbs Measures

2.1 Entropy Spectrum

Let f :X → X be a continuous map on a compact metric space. Let also μ be an f -invariant
probability measure on X. Given a finite measurable partition ξ of X, we define the local
entropy of μ at the point x ∈ X by

hμ(f, ξ, x) = lim
n→∞− 1

n
logμ(ξn(x)),

whenever the limit exists, where ξn(x) is the element of the partition ξn = ∨n−1
k=0 f −kξ con-

taining x (mod 0). We define the entropy spectrum (for the local entropies) of μ by

E(α) = h(f |{x ∈ X : hμ(f, ξ, x) = α}).
Let A be a p × p matrix whose entries aij are either 0 or 1, and let

�+
A = {(i1i2 · · ·) ∈ {1, . . . , p}N : aikik+1 = 1 for every k ≥ 1}.

The associated shift map σ :�+
A → �+

A is called a topological Markov chain. We always
assume that there is a positive integer k such that all entries of Ak are positive (this happens
if and only if σ |�+

A is topologically mixing). We also consider the distance in �+
A given by

d(i1i2 · · · , j1j2 · · ·) =
+∞∑
k=1

2−k|ik − jk|. (2)

Given a continuous function ϕ:�+
A → R, a measure μ on �+

A is called a Gibbs measure for
ϕ if there exist constants D1,D2 > 0 such that

D1 ≤ μ(Ci1···in )
exp(−nP (ϕ) + ∑n−1

k=0 ϕ(σ kw))
≤ D2,

for every w = (i1i2 · · ·) ∈ �+
A and n ∈ N, where

Ci1···in = {(j1j2 · · ·) ∈ �+
A : jk = ik for k = 1, . . . , n} (3)

(these sets are called cylinders), and P (ϕ) is the topological pressure of ϕ with respect to σ .
We recall that each Hölder continuous function ϕ has a unique σ -invariant probability Gibbs
measure μ = μϕ , which coincides with the unique equilibrium measure for ϕ.
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We have the following description of the entropy spectrum of a Gibbs measure. Consider
the function T : R → R defined by

T (q) = P (qϕ) − qP (ϕ). (4)

Proposition 1 (see [4]) Let μ = μϕ be the equilibrium measure of a Hölder continuous
function ϕ on �+

A .

1. The function T is real analytic and satisfies T ′(q) ≤ 0 and T ′′(q) ≥ 0 for every q ∈ R.
Moreover, T (0) = h(σ |�+

A ) and T (1) = 0.
2. The range of the function α = −T ′ is the interval [α1, α2], where α1 = α(+∞) and

α2 = α(−∞). It coincides with the domain of the function E .
3. We have E(α(q)) = T (q) + qα(q) for every q ∈ R.
4. If μ is not the measure of maximal entropy, then T and E are real analytic and strictly

convex.

It follows from properties 3 and 4 that the functions T and E form a Legendre pair. In
particular, T can be recovered from E and vice-versa, i.e.,

E(α) = inf
q∈R

(T (q) + qα) (5)

and

T (q) = sup
α∈R+

(E(α) − qα). (6)

2.2 Equivalence Classes of Potentials

Given a Hölder continuous function ϕ, we would like to recover as much information as
possible about the function from the entropy spectrum of its Gibbs measure. This is one of
the main problems in the theory of multifractal rigidity (see [1]). Clearly, we cannot expect
recovering the function ϕ itself since for example ϕ and ϕ + c, for any constant c ∈ R,
have the same Gibbs measure. We consider instead certain equivalence classes of potentials
and our problem becomes to characterize the equivalence class corresponding to a given
multifractal spectrum.

Two functions ϕ,ψ :�+
A → R are said to be cohomologous if there exist a continuous

function u:�+
A → R and a constant c ∈ R such that

ϕ − ψ = u ◦ σ − u + c. (7)

Cohomologous functions have the same Gibbs measures, and thus their entropy spectra are
also the same.

We denote by Aut(�+
A ) the family of automorphisms of (�+

A ,σ ), that is, the homeomor-
phisms τ :�+

A → �+
A such that τ ◦ σ = σ ◦ τ . We show that if two functions are related by

an automorphism, then the entropy spectra of their Gibbs measures coincide.

Proposition 2 Let (�+
A ,σ ) be a topologically mixing Markov chain, and let ϕ1, ϕ2:�+

A → R

be continuous functions. If ϕ2 = ϕ1 ◦ τ for some automorphism τ ∈ Aut(�+
A ), then

P (qϕ1) = P (qϕ2) for any q ∈ R, (8)

and thus the entropy spectra of the Gibbs measures of ϕ1 and ϕ2 are equal.
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Proof Given a σ -invariant probability measure ν on �+
A we define a new measure on �+

A

by ντ (C) = ν(τ (C)) for each measurable set C. Clearly, ντ is also a σ -invariant probability
measure. We can easily verify that hν(σ, ξ) = hντ (σ, τ−1ξ), and thus hν(σ ) = hντ (σ ). We
also have ∫

�+
A

ϕ2 dντ =
∫

�+
A

(ϕ1 ◦ τ) d(ν ◦ τ) =
∫

�+
A

ϕ1 dν,

and hence, for every q ∈ R,

hν(σ ) + q

∫
�+

A

ϕ1 dν = hντ (σ ) + q

∫
�+

A

ϕ2 dντ .

By the variational principle for the topological pressure, we conclude that the identity (8) is
satisfied for any q ∈ R.

In order to show that the entropy spectra are equal we notice that

T1(q) := P (qϕ1) − qP (ϕ1) = P (qϕ2) − qP (ϕ2) =: T2(q).

By Proposition 1, the entropy spectra of the Gibbs measures of ϕ1 and ϕ2 are respectively
determined by the functions T1 and T2 (see (5)). Thus the spectra are equal. �

Due to the above observations, we can only discuss the multifractal rigidity problem of
recovering ϕ from its spectrum E up to certain equivalence classes. To be precise, we say that
two functions ϕ1, ϕ2:�+

A → R are equivalent if ϕ1 and ϕ2 ◦ τ are cohomologous for some
automorphism τ ∈ Aut(�+

A ). We emphasize that in each of the corresponding equivalence
classes any two functions have the same entropy spectrum.

3 Locally Constant Functions

A function ϕ:�+
A → R is said to be locally constant if there exists k ∈ N such that ϕ|Ci1···ik

is constant for every i1, . . . , ik ∈ {1, . . . , p} (see (3) for the definition of Ci1···ik ). We de-
note by LC(k) the set of locally constant functions for a particular k. We will say that an
equivalence class of functions C (see Sect. 2.2 for the definition) is an equivalence class of
LC(k), or simply an LC(k) equivalence class, if ϕ ∈ LC(k) for some ϕ ∈ C, i.e., if there is a
representative of C in LC(k).

The space LC(2) plays an important role since, as is well known, given a function
ϕ ∈ LC(k) on a topological Markov chain �+

A , there is a topological Markov chain �+
B

equivalent to �+
A such that the image of ϕ under the equivalence is in LC(2). This shows

that it is sufficient to consider locally constant functions on cylinders of length 2.

Proposition 3 If ϕ:�+
A → R is a function in LC(k), then there exist a Markov chain �+

B

and a homeomorphism π :�+
A → �+

B such that

π ◦ σA = σB ◦ π and ϕ ◦ π−1 ∈ LC(2). (9)

Proof Although the result should be considered well-known it is hard to find a proof in
the literature. For completeness we provide a simple construction. The idea is to group the
elements of each sequence (α0α1 · · ·) ∈ �+

A in blocks of length k − 1, and to obtain in this
manner a new sequence that is in a new topological Markov chain �+

B . We fix a bijection γ
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between {1, . . . , p}k−1 and {1, . . . , pk−1}. For the p × p matrix A = (aij ), the pk−1 × pk−1

matrix B = (bij ) has entries

bij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if aγ −1(i)l γ
−1(i)l+1

= 1 for l = 1, . . . , k − 2,

and aγ −1(j)lγ
−1(j)l+1

= 1 for l = 1, . . . , k − 2,

and γ −1(i)m = γ −1(j)m−1 for m = 2, . . . , k − 1,

0, otherwise.

We define the map π by

π(α0α1 · · ·) = (γ (α0 · · ·αk−2)γ (α1 · · ·αk−1) · · ·).
One can easily show that π(�+

A ) = �+
B : indeed, for α = (α1α2 · · ·) ∈ �+

A we have
bπ(α)iπ(α)i+1 = 1, since

aγ −1(π(α)i )lγ
−1(π(α)i )l+1

= aαi+l−1αi+l
= 1 for l = 1, . . . , k − 2,

aγ −1(π(α)i+1)lγ
−1(π(α)i+1)l+1

= aαi+lαi+l+1 = 1 for l = 1, . . . , k − 2,

γ −1(π(α)i)m = αi+m−1 = γ −1(π(α)i+1)m−1 for m = 2, . . . , k − 1.

Furthermore, π :�+
A → �+

B is a homeomorphism since it maps cylinders of �+
A to cylinders

of �+
B , and the first identity in (9) can be easily checked. Since π maps cylinders of length

k to cylinders of length 2, and ϕ ∈ LC(k) in �+
A , we find that ϕ ◦ π−1 ∈ LC(2) in �+

B . �

For functions in LC(2) there is an explicit expression for the topological pressure. To a
function ϕ ∈ LC(2) we associate the p × p matrix

A(ϕ) = (aij exp(ϕ|Cij ))
p

i,j=1. (10)

We refer to A(ϕ) as the matrix associated to ϕ, or simply the matrix of ϕ. The following is
well know.

Proposition 4 If ϕ ∈ LC(2), then P (ϕ) = logρA(ϕ), where ρB is the spectral radius of the
matrix B .

We will consider functions ϕ ∈ LC(2) which are normalized, in the sense that P (ϕ) = 0.
By Proposition 4, these functions have a matrix A(ϕ) with spectral radius equal to 1.

We now study the relations between the matrices A(ϕ) and A(ψ) of two equivalent
LC(2) functions. We first introduce a family of automorphisms. For each permutation γ

of {1, . . . , p} such that aγ (i)γ (j) = 1 whenever aij = 1, we define an automorphism τ :�+
A →

�+
A by

τ((αi)i∈N) = (γ (αi))i∈N, (11)

and we call it a permutation automorphism.

Theorem 1 Let ϕ,ψ :�+
A → R be functions in LC(2). Then:

1. ϕ and ψ are cohomologous if and only if

A(ϕ) = ecD−1A(ψ)D (12)

for some positive diagonal matrix D and some constant c ∈ R;
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2. ϕ = ψ ◦ τ for some permutation automorphism τ if and only if

A(ϕ) = P −1A(ψ)P (13)

for some permutation matrix P such that A = P −1AP .

Proof We begin with an auxiliary result.

Lemma 1 If ϕ,ψ ∈ LC(2) are cohomologous, then any continuous function u that satis-
fies (7) is in LC(1).

Proof of the lemma We proceed by contradiction. If u were not in LC(1), then there would
exist sequences α = (α1α2 · · ·) and α′ = (α1α

′
2 · · ·) with α2 
= α′

2 such that u(α) 
= u(α′).
Take now β0 with aβ0α1 = 1, and consider the two sequences β = (β0α1α2 · · ·) and β ′ =
(β0α1α

′
2 · · ·) in Cβ0α1 . Since ϕ,ψ ∈ LC(2) we would have

ϕ(β) − ψ(β) = ϕ(β ′) − ψ(β ′),

which is equivalent to

u(α) − u(α′) = u(β) − u(β ′).

Similarly, for each n ∈ N we would obtain sequences β(n), β ′(n) ∈ Cβn−1···β0α1 such that

u(β(n)) − u(β ′(n)) = u(α) − u(α′) 
= 0.

Since d(β(n), β ′(n)) → 0 when n → ∞ (see (2)), we obtain a contradiction (note that u is
continuous). This shows that u ∈ LC(1). �

We proceed with the proof of the theorem. Assume that ϕ,ψ ∈ LC(2) are cohomologous.
By Lemma 1 there exist a continuous function u ∈ LC(1) and a constant c ∈ R satisfying (7).
Thus,

ϕ|Cij − ψ |Cij = u|Cj − u|Ci + c,

and this implies that (12) holds with the diagonal matrix

D = diag(exp(u|Ci))
p

i=1. (14)

In the other direction, we can easily verify that if (12) is satisfied for some positive diagonal
matrix D and some constant c, then the functions ϕ and ψ are cohomologous (and satisfy (7)
with u given by (14)).

We now assume that ϕ = ψ ◦ τ for some permutation automorphism τ as in (11). Then
ϕ|Cij = ψ |Cγ(i)γ (j), and the matrices A(ϕ) and A(ψ) are conjugated by the permutation
matrix

P = (δiγ (j))
p

i,j=1, (15)

where δαβ = 1 if α = β , and δαβ = 0 otherwise. We show that A = P −1AP . Set B =
P −1AP . Since P −1 coincides with the transpose of P , we have

bij =
p∑

α=1

p∑
β=1

(P −1)iαaαβPβj =
p∑

α=1

p∑
β=1

δαγ (i)aαβδβγ (j) = aγ (i)γ (j),
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where aij and bij are respectively the entries of A and B . If aij = 1, then there exists w =
(ij · · ·) ∈ �+

A . The sequence τ(w) = (γ (i)γ (j) · · ·) is in �+
A , and thus aγ (i)γ (j) = 1. On the

other hand, if aγ (i)γ (j) = 1, then there exists w′ = (γ (i)γ (j) · · ·) ∈ �+
A . Since τ is a bijection,

there also exists w ∈ �+
A with τ(w) = w′. By the structure of the automorphism, we have

w = (ij · · ·), and thus aij = 1. Therefore aγ (i)γ (j) = 1 if and only if aij = 1. This shows that
bij = aij for each i and j , and hence B = A.

In the other direction, we can easily verify that if (13) is satisfied for some permutation
matrix P such that A = P −1AP , then ϕ = ψ ◦ τ for some permutation automorphism τ

(that can be read from the entries of P as in (15)). �

We note that when the functions ϕ and ψ are cohomologous, the constant c in (12) is
equal to P (ϕ) − P (ψ). Thus, when the functions are normalized, i.e., P (ϕ) = P (ψ) = 0,
we have c = 0 and A(ϕ) = D−1A(ψ)D.

4 Multifractal Rigidity for Locally Constant Functions

4.1 LC(1) Functions on Full Markov Chains

We show that for full topological Markov chains �+
n , the entropy spectrum E of an LC(1)

equivalence class allows us to recover this class completely. This is the strongest possible
multifractal rigidity.

Theorem 2 Let (�+
n , σ ) be the full topological Markov chain with n symbols and E the en-

tropy spectrum of an LC(1) equivalence class of functions. Then E completely characterizes
the equivalence class.

Proof Let ϕ ∈ LC(1) be an element of an LC(1) equivalence class, and write

ϕ|Ci = logαi for i = 1, . . . , n. (16)

Without loss of generality we assume that αi ≥ αi+1 for i = 1, . . . , n−1, and that P (ϕ) = 0.
By (5) and (6) we can recover E from the function T in (4) and vice-versa. We show how

to determine the equivalence class of ϕ from T , which is thus equivalent to determine the
equivalence class from E . We have

P (qϕ) = lim
m→∞

1

m
log

∑
i1···im

e
q supCi1 ···im Smϕ(x)

,

where Smϕ(x) = ∑m−1
k=0 ϕ(σ kx). Since

sup
Ci1 ···im

Smϕ(x) = log(αi1 · · ·αim),

we obtain

P (qϕ) = lim
m→∞

1

m
log

∑
i1···im

(αi1 · · ·αim)q

= lim
m→∞

1

m
log(α

q

1 + · · · + αq
n)m = log(α

q

1 + · · · + αq
n).



J Stat Phys (2008) 130: 387–412 395

Therefore

T (q) = log(α
q

1 + · · · + αq
n).

In order to determine the constants α1, . . . , αn from the function T , we use the following
result.

Lemma 2 (see for example [7]) Assume that the polynomial

p(x) = xn + an−1x
n−1 + · · · + a0 (17)

has roots αj , j = 1, . . . , n, and set βk = ∑n

j=1 αk
j for k ∈ N. Then

βk + an−1βk−1 + · · · + a0βk−n = 0, for k > n,

βk + an−1βk−1 + · · · + an−k+1β1 = −kan−k, for 1 ≤ k ≤ n.

Set βk = αk
1 + · · · + αk

n = expT (k) for k = 1, . . . , n, with α1, . . . , αn as in (16). By
Lemma 2, we have

−an−1 = β1,

−2an−2 = β2 + an−1β1,

−3an−3 = β3 + an−2β2 + an−3β1,

· · ·
−na0 = βn + an−1βn−1 + · · · + a1β1.

(18)

These relations allow us to determine the coefficients a0, . . . , an−1 of the polynomial p(x)

in (17). To determine ϕ and hence its equivalence class we only need to compute the roots
α1, . . . , αn of the polynomial. �

We note that the proof of Theorem 2 provides an algorithm to determine the LC(1) equiv-
alence class of functions with a given spectrum on a full topological Markov chain (�+

n , σ ):

1. compute βk = expT (k) for k = 1, . . . , n, and use the identities in (18) to compute
a0, . . . , an−1;

2. compute the roots α1, . . . , αn of the polynomial p(x) in (17);
3. the required LC(1) equivalence class contains the function ϕ ∈ LC(1) satisfying (16).

4.2 LC(2) Functions on Markov Chains with 2 Symbols

We show in this section that for LC(2) functions on topological Markov chains with 2 sym-
bols there is also a strong multifractal rigidity. However, this rigidity is not as strong as the
one observed for LC(1) functions in Theorem 2.

Note that there is only three topological Markov chains with 2 symbols that are topolog-
ically mixing. One is the full Markov chain �+

2 . The other two have transition matrices(
1 1
1 0

)
and

(
0 1
1 1

)
(19)

(and these two are equivalent by a permutation of symbols). In the case of �+
2 we show

that it is possible to characterize completely the LC(2) equivalence class from the entropy
spectrum, except in a particular and well-identified case in which there are three possible



396 J Stat Phys (2008) 130: 387–412

equivalence classes (see Theorem 3). We note that our result is optimal since, as we shall
see, the three classes have the same entropy spectra.

The case of Markov chains �+
A with a transition matrix A in (19) is considered in The-

orem 4. In that case we will show that the entropy spectrum of an LC(2) equivalence class
completely characterizes the equivalence class.

We start with the full topological Markov chain �+
2 .

Theorem 3 Let (�+
2 , σ ) be the full topological Markov chain with two symbols and let E

be the entropy spectrum of an LC(2) equivalence class of functions. Then the equivalence
class can be completely characterized from E , except when

T (q) = log(αq + (1 − α)q) (20)

for some α ∈ (0,1/2), in which case there exist three distinct equivalence classes repre-
sented by the functions with matrices (see (10))(

1 − α 1 − α

α α

)
,

(
1 − α α

α 1 − α

)
,

(
α 1 − α

1 − α α

)
. (21)

Proof We first notice that there always exists ϕ ∈ LC(2) in the equivalence class defining
the spectrum E such that P (ϕ) = 0, and

ϕ|C11 = logα11, ϕ|C12 = logα12, ϕ|C21 = 0, ϕ|C22 = logα22,

with α11 ≥ α22. Indeed, consider a function ϕ in LC(2) with P (ϕ) = 0. Take now u ∈ LC(1)

with u|C1 = −ϕ|C21 and u|C2 = 0, and let

ψ = ϕ + u ◦ σ − u.

Clearly, ψ ∈ LC(2), P (ψ) = 0, and

ψ |C21 = ϕ|C21 + u|C1 − u|C2 = 0.

We have (see (10))

A(ϕ) =
(

α11 α12

1 α22

)
,

and denoting by ρ(q) the spectral radius of the matrix

A(qϕ) =
(

α
q

11 α
q

12
1 α

q

22

)
, (22)

it follows from Proposition 4 that T (q) = logρ(q). We will consider the parameters

c = lim
q→+∞ T ′(q), c = lim

q→−∞ T ′(q), and T ′(0). (23)

We first use c and c to determine functions that may originate the spectrum, and then we use
T ′(0) to select the ones that actually can occur.

We start with an auxiliary result. We denote by Mσ the family of σ -invariant probability
measures on �+

2 .
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Lemma 3 Let ψ ∈ LC(2) be a function with ψ |Cij = βij for i, j ∈ {1,2}. Then

lim
q→+∞

∫
�+

2

ψ dμq = max
ν∈Mσ

∫
�+

2

ψ dν = max{β11,
1
2 (β12 + β21), β22}, (24)

where μq is the equilibrium measure of qψ .

Proof of the lemma. We first show that

lim
q→+∞

∫
�+

2

ψ dμq = sup
ν∈Mσ

∫
�+

2

ψ dν. (25)

Let ν ∈ Mσ . By the variational principle for the topological pressure,

hμq (σ ) +
∫

�+
2

qψ dμq ≥ hν(σ ) +
∫

�+
2

qψ dν.

Since hμq (σ ),hν(σ ) ≤ log 2, dividing by q and letting q → +∞ we obtain

lim
q→+∞

∫
�+

2

ψ dμq ≥
∫

�+
2

ψ dν.

Since μq ∈ Mσ for any q ∈ R we thus obtain (25).
We now show that the supremum in (25) is in fact a maximum and that it is equal to

the value in the right-hand side of (24). Let ν ∈ Mσ . We have ν(C1) = ν(C11) + ν(C12) as
well as

ν(C1) = ν(σ−1C1) = ν(C11) + ν(C21).

Therefore, ν(C12) = ν(C21), and∫
�+

2

ψ dν = ν(C11)β11 + ν(C12)(β12 + β21) + ν(C22)β22.

Let us consider the function ρ: R3 → R given by

ρ(x, y, z) = xβ11 + y(β12 + β21) + zβ22,

and the compact set

B = {(x, y, z) ∈ R
3 : x + 2y + z = 1 and x, y, z ≥ 0}.

Clearly,

sup
ν∈Mσ

∫
�+

2

ψ dν = max{ρ(x, y, z) : (x, y, z) ∈ B}. (26)

Furthermore, the maximum in (26) is attained at one of the vertices of B , namely (1,0,0),
(0,1/2,0) or (0,0,1). Thus,

max{ρ(x, y, z) : (x, y, z) ∈ B} = max{β11,
1
2 (β12 + β21), β22}.
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Let now δ(i1 · · · ik) ∈ Mσ be the measure supported on the periodic point (i1 · · · iki1 · · · ik · · ·).
Setting

ν1 = δ(1), ν2 = 1
2 (δ(12) + δ(21)), ν3 = δ(2)

we have ∫
�+

2

ψ dν1 = β11,

∫
�+

2

ψ dν2 = 1

2
(β12 + β21),

∫
�+

2

ψ dν3 = β2.

This shows that the supremum in (26) is in fact a maximum. This concludes the proof of
the lemma. �

We recall that

T ′(q) =
∫

�+
2

ϕ dμqϕ

(see for example [6]). Hence, by Lemma 3,

c = max

{
logα11,

1

2
logα12

}
and c = min

{
1

2
logα12, logα22

}
.

Since μ0 is the Bernoulli measure (1/2,1/2), we have

T ′(0) = 1

4
(logα11 + logα12 + logα22). (27)

We now consider three cases:

1.

logα22 ≤ 1

2
logα12 ≤ logα11, (28)

in which case c = logα11 and c = logα22;
2.

1

2
logα12 ≤ logα22 ≤ logα11, (29)

in which case c = logα11 and 2c = logα12;
3.

logα22 ≤ logα11 ≤ 1

2
logα12, (30)

in which case 2c = logα12 and c = logα22.

In the three cases two of the numbers α11, α12 and α22 are determined by c and c, although
we are not able to say which ones. In the first case α11 and α22 are determined, in the second
case α11 and α12, and in the third case α12 and α22. In order to determine the third number
(among α11, α12 and α22) we note that A(ϕ) is a positive matrix, and thus it has a positive
eigenvalue greater in absolute value than the second one. Since the spectral radius of A(ϕ)

is expP (ϕ) = 1 (see Proposition 4), the maximal eigenvalue of the matrix is thus exactly 1.
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This will be used to determine the third number. Since ρA(ϕ) = 1, we can easily verify that
the matrix A(ϕ) must be, in each case,

Case 1 Case 2 Case 3(
ec (1 − ec)(1 − ec)

1 ec

) (
ec e2c

1 1 − e2c

1−ec

) (
1 − e2c

1−ec e2c

1 ec

)
. (31)

We consider the three cases and determine which values c and c may attain:

1. In this case ec < 1. Indeed, if we would have ec > 1 then the trace of A(ϕ) would be
greater than 2, and thus its spectral radius would be greater than 1. Furthermore, if it
would be ec = 1 then we would have α12 = 0, which is impossible. We also have ec < 1
since otherwise α12 ≤ 0 which is again impossible. It follows from (28) that

e2c ≤ (1 − ec)(1 − ec) ≤ e2c,

which is equivalent to

ec − 1 + √
(1 − ec)2 + 4(1 − ec)

2
≤ ec ≤ 1 − e2c

1 − ec
. (32)

2. In this case ec < 1. Indeed, similarly, if we would have ec > 1 then the trace of A(ϕ)

would be greater than 2, and thus its spectral radius would be greater than 1. Furthermore,
if it would be ec = 1 then α22 would be undefined. Since c ≤ c we also have ec < 1. It
follows from (29) that

ec ≤ 1 − e2c

1 − ec
≤ ec,

which is equivalent to

1 − ec ≤ ec ≤ 1 − e2c

1 − ec
. (33)

3. Proceeding as in Case 2 we find that ec < 1. Furthermore, we must have ec < 1 since
otherwise α11 would be negative, which is impossible. It follows from (30) that

ec ≤ 1 − e2c

1 − ec
≤ ec,

which is equivalent to

ec − 1 + √
(1 − ec)2 + 4(1 − ec)

2
≤ ec ≤ 1 − ec. (34)

It can be easily verified that for ec > 1/2 the functions

ec − 1 + √
(1 − ec)2 + 4(1 − ec)

2
, 1 − e2c

1 − ec
and 1 − ec

are smaller than ec . Since ec is smaller than or equal to some of these functions, we conclude
that for ec > 1/2 we would have ec < ec , which is impossible. Thus we must have ec ≤ 1/2.
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Note that for ec ∈ [0,1/2],

ec − 1 + √
(1 − ec)2 + 4(1 − ec)

2
≤ 1 − ec ≤ 1 − e2c

1 − ec
,

with equalities when ec = 1/2.
The three inequalities in (32–34) can be simultaneously satisfied only when

ec = 1 − ec. (35)

In this case we are in a situation in which it is impossible to completely recover the equiva-
lence class. Instead, we have three classes represented by the functions ϕ with matrices

Case 1 Case 2 Case 3(
1 − ec ec(1 − ec)

1 ec

) (
1 − ec e2c

1 1 − ec

) (
ec (1 − ec)2

1 ec

)
. (36)

When ec = 1/2 the three matrices coincide and thus we recover a single class. When
ec 
= 1/2 the functions are cohomologous to the ones in (21) with α = ec . We now show
that the three functions are not equivalent although they have the same entropy spectrum.

Lemma 4 Let (�+
2 , σ ) be the full topological Markov chain with two symbols and

let ϕ1, ϕ2, ϕ3 ∈ LC(2) be the functions with matrices respectively as in (21) for some
α ∈ (0,1/2). Then the equilibrium measures of ϕ1, ϕ2, and ϕ3 have the same entropy spec-
trum but the functions are not equivalent.

Proof of the lemma Computing the spectral radius of the matrices A(qϕi) we obtain

P (qϕi) = log(αq + (1 − α)q), i = 1,2,3.

Hence, by (5), the entropy spectra of the three functions coincide.
We now show that the functions are not equivalent. Note that any τ ∈ Aut(�+

2 ) trans-
forms fixed points of σn into fixed points of σn. In particular, setting γ1 = (11 · · ·) and
γ2 = (22 · · ·), we obtain {τ(γ1), τ (γ2)} = {γ1, γ2}. Thus, if two functions ψ1,ψ2 ∈ LC(2)

with P (ψ1) = P (ψ2) are equivalent, then

{ψ1(γ1),ψ1(γ2)} = {ψ2(γ1),ψ2(γ2)}.
Since the functions ϕi , i = 1,2,3 have the same topological pressure and the sets
{ϕi(γ1), ϕi(γ2)}, i = 1,2,3 are distinct, we conclude that ϕ1, ϕ2, and ϕ3 cannot be equiva-
lent. �

We now assume that (35) does not occur, i.e., that ec 
= 1−ec. There are two possibilities:
when

1 − ec < ec ≤ 1 − e2c

1 − ec
, (37)

we are in Case 1 or Case 2 (see (28) and (29)), and when

ec − 1 + √
(1 − ec)2 + 4(1 − ec)

2
≤ ec < 1 − ec, (38)
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we are in Case 1 or Case 3 (see (28) and (30)). Using the parameter T ′(0) we will determine
in which case we are, and thus we will be able to identify a unique equivalence class.

Assume first that (37) holds. In Case 1 (see (27)) we have

e4T ′(0) = ecec(1 − ec)(1 − ec), (39)

and in Case 2 we have

e4T ′(0) = ece2c

(
1 − e2c

1 − ec

)
. (40)

If only one of these identities holds, then we identify exactly the case in which we are and
thus the equivalence class. Otherwise, when both identities in (39) and (40) are satisfied we
must have

ec = 1 − ec or ec = 1 − e2c

1 − ec
, (41)

which are conditions at the boundary of the region of Case 2. The first identity in (41) was
already analyzed and corresponds to the situation when we obtain three equivalence classes.
When the second identity in (41) holds, the equivalence classes in Case 1 and Case 2 are
equal, and contain the function with matrix

(
1 − e2c

1−ec e2c

1 ec

)
.

Thus, when (37) holds, since ec 
= 1 − ec we identify a unique LC(2) equivalence class that
generates the spectrum.

The situation when (38) holds is similar. Namely, in Case 1 we have

e4T ′(0) = ecec(1 − ec)(1 − ec), (42)

and in Case 3 we have

e4T ′(0) = e2cec

(
1 − e2c

1 − ec

)
. (43)

If only one of these identities holds, again we identify exactly one equivalence class that
generates the spectrum. Otherwise, when both identities in (42) and (43) are satisfied we
must have

ec = 1 − ec or ec = 1 − e2c

1 − ec
, (44)

now corresponding to the boundary of the region of Case 3. When the second identity in (44)
holds, the equivalence classes in Case 1 and Case 3 are equal, and contain the function
with matrix (

ec e2c

1 1 − e2c

1−ec

)
.

Thus, when (38) holds, since ec 
= 1 − ec we identify a unique LC(2) equivalence class that
generates the spectrum. This concludes the proof of the theorem. �
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It follows from the proof of Theorem 3 that the case with three equivalence classes
(see (20)) occurs if and only if

exp lim
q→+∞ T ′(q) + exp lim

q→−∞T ′(q) = 1. (45)

By Proposition 1, if [α1, α2] is the domain of the entropy spectrum E , the identity (45) can
be written in the form e−α1 + e−α2 = 1.

The proof of Theorem 3 also provides an algorithm to determine the equivalence classes
with a given spectrum:

1. compute c, c and T ′(0);
2. if ec +ec = 1, then we obtain three equivalence classes, represented by the functions with

matrices in (36);
3. if (39) holds, then the unique equivalence class is represented by the first matrix in (31);
4. if (40) holds, then the unique equivalence class is represented by the second matrix

in (31);
5. if (43) holds, then the unique equivalence class is represented by the third matrix in (31).

We now consider the case of the topological Markov chain �+
A with two symbols, with

transition matrix A = ( 1 1
1 0

)
or A = ( 0 1

1 1

)
.

Theorem 4 Let (�+
A ,σ ) be the topological Markov chain with two symbols, with transition

matrix A = ( 1 1
1 0

)
or A = ( 0 1

1 1

)
, and let E be the entropy spectrum of an LC(2) equivalence

class of functions. Then we can completely characterize the equivalence class from the spec-
trum E .

Proof We only consider the case when A = ( 1 1
1 0

)
since the other one is entirely similar.

Let ϕ ∈ LC(2) be an element of the equivalence class defining the spectrum E such that
P (ϕ) = 0, and

ϕ|C11 = logα11, ϕ|C12 = logα12, ϕ|C21 = 0

(as in the proof of Theorem 3 we can easily verify that there always exists a function ϕ with
these properties). Recall that we can compute T (q) = P (qϕ) from the spectrum E (see (6)).
We proceed in a similar manner to that in the proof of Theorem 3, considering now the two
parameters c and c in (23). As in the proof of Lemma 3 we can show that

c = max

{
logα11,

1

2
logα12

}
and c = min

{
logα11,

1

2
logα12

}
.

We can easily verify that there are two possibilities for the matrix A(ϕ), namely

Case 1 Case 2(
ec e2c

1 0

) (
ec e2c

1 0

)
. (46)

Since P (ϕ) = 0, the function ϕ is represented by a matrix with spectral radius 1, and thus
the matrices in (46) must have 1 as an eigenvalue. Therefore, in Case 1 we have

ec + e2c = 1, (47)
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and in Case 2 we have

e2c + ec = 1. (48)

In order that the two identities (47) and (48) are satisfied simultaneously the number ec must
be 0, (−1 + √

5)/2 or 1. It cannot be 0, and also cannot be 1 since ec would then be 0. Thus
we must have ec = (−1 + √

5)/2. We can easily verify that for this value of ec the two
matrices in (46) are equal.

To determine the equivalence class we only need to verify which of the identities in (47)
and (48) is satisfied. If (47) holds, then the equivalence class is represented by the first matrix
in (46). Otherwise, if (48) holds, then the equivalence class is represented by the second
matrix in (46). When both identities hold, as we observed above, the two matrices in (46)
are equal, and thus we obtain a unique equivalence class. Therefore, for each spectrum of an
LC(2) equivalence class there is a unique class with that spectrum. �

The proof of Theorem 4 also provides an algorithm to obtain the LC(2) equivalence class
from the spectrum. When A = ( 1 1

1 0

)
the algorithm is as follows:

1. compute c and c;
2. if ec + e2c = 1, then the equivalence class is represented by the first matrix in (46);
3. if e2c + ec = 1, then the equivalence class is represented by the second matrix in (46).

5 Multifractal Nonrigidity

We give in this section an explicit example of a topological Markov chain with three symbols
for which there is no multifractal rigidity, even more in some generic sense.

Let ϕ ∈ LC(2) be a function with P (ϕ) = 0. Recall that by Proposition 4,

T (q) = P (qϕ) = logρA(qϕ).

Given a square matrix A = (aij ) we consider the characteristic polynomial

pA(z, q) = det(z Id−A(q)), (49)

where A(q) = (a
q

ij ). We note that if pA(ϕ) is known explicitly, then T can be computed
explicitly. This follows from the identity

pA(ϕ)(z, q) = det(z Id−A(ϕ)(q)) = det(z Id−A(qϕ))

(see (22)). Thus, if we know pA(ϕ) explicitly, then the entropy spectrum E can also be com-
puted explicitly (see (5)). Nevertheless, we will see that in general the knowledge of pA(ϕ)

is insufficient to determine the equivalence class of ϕ. More precisely, we will exhibit func-
tions in distinct equivalence classes that have the same characteristic polynomial, and thus
the same entropy spectrum. This shows that the knowledge of T (and thus the knowledge
of E) is insufficient to determine the equivalence class of ϕ.

Theorem 5 Let (�+
A ,σ ) be the topological Markov chain with transition matrix

A =
(0 1 1

1 0 1
1 1 0

)
, (50)
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and let ϕ,ψ ∈ LC(2) be functions satisfying P (ϕ) = P (ψ) = 0 with matrices

A(ϕ) =
(0 α12 α13

1 0 α23

1 α32 0

)
and A(ψ) =

⎛
⎝0 α12 α13

1 0 α13
α12

α32

1 α12
α13

α23 0

⎞
⎠ , (51)

where α12 > α13 > α23α32 and α13α32 
= α12α23. Then the functions ϕ and ψ have the same
characteristic polynomial but are not equivalent.

Proof We can easily verify that pA(ϕ) = pA(ψ) = p, where

p(z, q) = z3 − (α
q

12 + α
q

13 + (α23α32)
q)z + (α12α23)

q + (α13α32)
q .

In order to show that the functions ϕ and ψ are not equivalent we first observe that
Aut(�+

A ) ≈ S3, where S3 is the permutation group of 3 elements (see Example 2.19 in [3]).
Notice that to each permutation γ of {1,2,3} corresponds a permutation automorphism in
Aut(�+

A ) (see (11)). Therefore, the automorphisms of �+
A are precisely the permutation

automorphisms.
We proceed by contradiction. Assume that ϕ and ψ are equivalent, i.e., that there ex-

ist τ ∈ Aut(�+
A ) obtained from a permutation γ as in (11), and a continuous function

u:�+
A → R such that

ϕ ◦ τ = ψ + u ◦ σ − u. (52)

Since ϕ and ψ are in LC(2), the function ϕ ◦ τ is also in LC(2), and u is in LC(1) (see
Lemma 1). Thus we can write u|Ci = logdi with di > 0 for i = 1,2,3. The identity (52) can
be written in matrix form as

( 0 αγ (1)γ (2) αγ (1)γ (3)

αγ (2)γ (1) 0 αγ (2)γ (3)

αγ (3)γ (1) αγ (3)γ (2) 0

)
=

⎛
⎝ 0 d1

d2
α12

d1
d3

α13
d2
d1

0 d2
d3

α13
α12

α32
d3
d1

d3
d2

α12
α13

α23 0

⎞
⎠ . (53)

We note that

αγ (1)γ (2)αγ (2)γ (1) = α12,

αγ (1)γ (3)αγ (3)γ (1) = α13,

αγ (2)γ (3)αγ (3)γ (2) = α23α32.

(54)

The matrix in the left-hand side of (53) can be written in the form P −1A(ϕ)P where P is
the permutation matrix in (15). Since the set of entries of PA(ϕ)P −1 is the same as the
set of entries of A(ϕ), we can easily verify that the identities in (54) together with the
hypothesis α12 > α13 > α23α32 imply that P is the identity matrix (and thus τ is the identity
automorphism).

Indeed, if γ (1) = 2 then α2γ (2)αγ (2)2 = α12. Since α23α32 < α12 it cannot be γ (2) = 3.
Therefore, γ (2) = 1 and γ (3) = 3. But from the second identity in (54) we then should have
α23α32 = α13, which contradicts to the hypotheses in the theorem. We can show in a similar
manner that γ (1) = 3 yields a contradiction. Indeed, if γ (1) = 3 then from the first identity
in (54) we would have α3γ (2)αγ (2)3 = α12. It follows from the hypotheses that it cannot be
γ (2) = 2, and thus we must have γ (2) = 1 and γ (3) = 2. Then the second identity in (54)
gives α32α23 = α13 which contradicts again the hypotheses in the theorem. Therefore, we
must have γ (1) = 1, and the first identity in (54) gives α1γ (2)αγ (2)1 = α12. If γ (2) = 3 then
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we obtain α13 = α12 which is forbidden by the hypotheses. Thus we must have γ (2) = 2 and
γ (3) = 3. This shows that γ = Id, and thus τ is the identity automorphism.

Equation (53) thus reduces to

(0 α12 α13

1 0 α23

1 α32 0

)
=

⎛
⎝ 0 d1

d2
α12

d1
d3

α13
d2
d1

0 d2
d3

α13
α12

α32
d3
d1

d3
d2

α12
α13

α23 0

⎞
⎠ .

This implies that d1 = d2 = d3 and hence u is constant. Therefore, ψ = ϕ. On the other hand,
since α13α32 
= α12α23 we must have ψ 
= ϕ. This contradiction shows that the functions ψ

and ϕ cannot be equivalent, contrarily to what was assumed above (see (52)). �

We note that for the matrix A in (50) all entries of A2 are positive, and thus the associated
Markov chain is topologically mixing.

Theorem 5 tell us that given a characteristic polynomial of a generic LC(2) function,
we can only recover information that allows us to identify at least two distinct equivalence
classes. Since the function T possesses less information than the characteristic polynomial,
it could happen that using solely the information given by T we could in general obtain
more equivalence classes than the two above obtained from the characteristic polynomial.
However, we now show that T contains sufficient information to obtain exactly the two
equivalence classes.

Theorem 6 Let (�+
A ,σ ) be the topological Markov chain with transition matrix A as in

(50), and let E be the entropy spectrum of an LC(2) function. Then there are two distinct
LC(2) equivalence classes that generate the spectrum E , except in a particular case in which
there is a unique LC(2) equivalence class generating the spectrum.

Proof We separate the proof into several steps. We start with some auxiliary results. Let
(�+

A ,σ ) be a topologically mixing Markov chain with p symbols, and let η ∈ LC(2) be
a function with matrix A(η) = (cij )

p

i,j=1. For i = 1, . . . , p we set

Ei = {cj1τ(j1) · · · cji τ (ji ) : 1 ≤ j1 < · · · < ji ≤ p and τ ∈ Pi},
where Pi is the family of permutations of {j1, . . . , ji}. We also set

λ = max{α1/i : i = 1, . . . , p and α ∈ Ei}, (55)

λ = min{α1/i : i = 1, . . . , p and α ∈ Ei}, (56)

and let ρ(q) be the spectral radius of the matrix

A(qη) = (c
q

ij )
p

i,j=1. (57)

Lemma 5 The limits

ρ = lim
q→+∞

ρ(q)

λ
q and ρ = lim

q→−∞
ρ(q)

λq
(58)

exist and are nonzero. Moreover, if there is only one value α1/i equal to λ (respectively, λ),
then ρ = 1 (respectively, ρ = 1).
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Proof of the lemma The characteristic polynomial of A(η) (see (49)) is given by

p(z, q) = zp +
p∑

i=1

∑
α∈Ei

(−1)i(−1)σ(α)αqzp−i , (59)

where σ(α) is the sign of the permutation associated to α. Since p(ρ(q), q) = 0, taking
z = ρ(q) and dividing in (59) by ρ(q)p we obtain

1 +
p∑

i=1

(−1)i

∑
α∈Ei

(−1)σ(α)αq

ρ(q)i
= 0. (60)

For each i = 1, . . . , p, set αi = max{α : α ∈ Ei}. Let ni be the number of times that the
maximum is attained, and let αi,1, . . . , αi,ni

be the elements of Ei equal to αi . Then

lim
q→+∞

∑
α∈Ei

(−1)σ(α)αq

ρ(q)i
= lim

q→+∞

ni∑
k=1

(−1)σ(αi,k ) α
q

i

ρ(q)i
=

ni∑
k=1

(−1)σ(αi,k ) lim
q→+∞

[
(α

1/i

i )q

ρ(q)

]i

.

Thus, letting q → +∞ in (60) yields

1 +
p∑

i=1

ni∑
k=1

(−1)i(−1)σ(αi,k ) lim
q→+∞

[
(α

1/i

i )q

ρ(q)

]i

= 0.

Since

λ = max{α1/i

i : i = 1, . . . , p},
denoting by J the set of integers j ∈ {1, . . . , p} such that α

1/j

j = λ we obtain

1 +
∑
j∈J

nj∑
k=1

(−1)j (−1)σ(αj,k) lim
q→+∞

[
λ

q

ρ(q)

]j

= 0. (61)

We conclude that the first limit in (58) exists and is nonzero.
If there is only one value α1/i equal to λ with α ∈ Ei , then J has a single element

j ∈ {1, . . . , p}, nj = 1, and (61) reduces to

1 + (−1)j (−1)σ(αj ) lim
q→+∞

[
λ

q

ρ(q)

]j

= 0.

This implies that the first limit in (58) has absolute value equal to 1. Since ρ(q) and λ are
positive the limit is 1.

The case when q → −∞ can be treated in a similar manner, by interchanging the roles
of λ and λ. �

The following result gives a formula for T ′(q).

Lemma 6 If p is the characteristic polynomial of A(η) (see (59)), then

T ′(q) = −
∂
∂q

p(ρ(q), q)

ρ(q) ∂
∂z

p(ρ(q), q)
− P (η). (62)
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Proof of the lemma We have

T (q) = logρ(q) − qP (η),

and thus

T ′(q) = ρ ′(q)

ρ(q)
− P (η). (63)

Since p(ρ(q), q) = 0, differentiating with respect to q we obtain a formula for ρ ′(q) that
substituted in (63) yields (62). �

We now compute the limit of T ′(q) as q → ±∞.

Lemma 7 We have

lim
q→+∞T ′(q) = logλ − P (η) and lim

q→−∞ T ′(q) = logλ − P (η).

Proof of the lemma As in the proof of Lemma 5, let ni be the number of elements α ∈ Ei

such that λ = α1/i . We continue to denote these elements by αi,1, . . . , αi,ni
. By Lemma 5 we

have ρ 
= 0. Since p(ρ(q), q) = 0, it follows from (59) that

0 = lim
q→+∞

p(ρ(q), q)

(λ
q
)p

= ρp +
p∑

i=1

ni∑
j=1

(−1)i(−1)σ(αi,j )ρp−i . (64)

Furthermore, it also follows from (59) that

∂

∂q
p(z, q) =

p∑
i=1

∑
α∈Ei

(−1)i(−1)σ(α) logα · αqzp−i ,

and

∂

∂z
p(z, q) = pzp−1 +

p∑
i=1

∑
α∈Ei

(−1)i(−1)σ(α)(p − i)αqzp−i−1.

Therefore,

lim
q→+∞

∂
∂q

p(ρ(q), q)

(λ
q
)
p =

p∑
i=1

ni∑
j=1

(−1)i(−1)σ(αi,j ) log(λ
i
)ρp−i

= logλ

p∑
i=1

ni∑
j=1

(−1)i(−1)σ(αi,j )iρp−i ,

and

lim
q→+∞

ρ(q) ∂
∂z

p(ρ(q), q)

(λ
q
)
p = pρp +

p∑
i=1

ni∑
j=1

(−1)i(−1)σ(αi,j )(p − i)ρp−i

= p

[
ρp +

p∑
i=1

ni∑
j=1

(−1)i(−1)σ(αi,j )ρp−i

]
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−
p∑

i=1

ni∑
j=1

(−1)i(−1)σ(αi,j )iρp−i

= −
p∑

i=1

ni∑
j=1

(−1)i(−1)σ(αi,j )iρp−i ,

using (64) in the last identity. It follows from Lemma 6 that

lim
q→+∞T ′(q) = − logλ

∑p

i=1

∑ni

j=1(−1)i(−1)σ(αi,j )iρp−i

−∑p

i=1

∑ni

j=1(−1)i(−1)σ(αi,j )iρp−i
− P (η) = logλ − P (η).

The case when q → −∞ can be treated in a similar manner. �

We now proceed with the proof of the theorem. Let E be the entropy spectrum of an
LC(2) equivalence class. Given a function ϕ ∈ LC(2) that generates the spectrum, in a simi-
lar manner to that in the proof of Theorem 3 we may assume, without loss of generality, that
P (ϕ) = 0, and

ϕ|C12 = logα12, ϕ|C21 = 0, ϕ|C31 = 0, (65)

ϕ|C13 = logα13, ϕ|C23 = logα23, ϕ|C32 = logα32 (66)

with α12 ≥ α13 ≥ α23α32. Then the matrix A(ϕ) is given by (51). By Theorem 5, if
α12α23 
= α13α32 then the function ψ with matrix A(ψ) given by (51) has the same entropy
spectrum as ϕ but is not equivalent to ϕ.

In order to obtain the functions ϕ and ψ from E , we analyze T (q) = P (qϕ) or more
precisely its derivative T ′(q).

Lemma 8 Let (�+
A ,σ ) be the topological Markov chain with transition matrix A as in (50),

and let η ∈ LC(2) be a function with η|Cij = log cij for i 
= j and P (η) = 0. Then the sets

S1 = {√c12c21,
√

c13c31,
√

c23c32}, (67)

S2 = { 3
√

c12c23c31,
3
√

c13c32c21} (68)

can be determined from T ′(q).

Proof of the lemma In view of Lemma 6, it follows from a straightforward computation that

T ′(q) = ψ(c12c23c31) + ψ(c13c32c21)

3ρ3(q) − ρ(q)((c12c21)q + (c13c31)q + (c23c32)q)
(69)

+ρ(q)
ψ(c12c21) + ψ(c13c31) + ψ(c23c32)

3ρ3(q) − ρ(q)((c12c21)q + (c13c31)q + (c23c32)q)
,

where ψ(x) = xq logx. Since ρ(q) is a root of the characteristic polynomial of the matrix
A(qη) (see (57)), we have

ρ3(q) − ρ(q)((c12c21)
q + (c13c31)

q + (c23c32)
q) = (c12c23c31)

q + (c13c32c21)
q .
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Therefore, (69) can be written in the form

T ′(q) = ψ(c12c23c31) + ψ(c13c32c21)

2ρ3(q) + (c12c23c31)q + (c13c32c21)q

+ρ(q)
ψ(c12c21) + ψ(c13c31) + ψ(c23c32)

2ρ3(q) + (c12c23c31)q + (c13c32c21)q
.

By Lemma 7, and (55), and (56), we have

c = lim
q→+∞T ′(q) = log max (S1 ∪ S2) ,

c = lim
q→−∞T ′(q) = log min (S1 ∪ S2) .

Since μ0 is the Markov measure with probability vector (1/3,1/3,1/3) and matrix A/2,
it follows from the identity

T ′(q) =
∫

�+
A

η dμqη,

that

6T ′(0) = 2(log(c12c21) + log(c13c31) + log(c23c32))

= 3(log(c12c23c31) + log(c13c32c21)).
(70)

To determine whether ec ∈ S2 or not we study the function

V(α) = lim
q→+∞

[
(2ρ3(q) + e3cq + eκq)T ′(q)

ρ(q)αq
− 3ce3cq + κeκq

ρ(q)αq

]
,

where κ = 6T ′(0) − 3c. When ec ∈ S2, by (70) we have S2 = {ec, e2T ′(0)−c}, and

V(α) = lim
q→+∞

ψ(c12c21) + ψ(c13c31) + ψ(c23c32)

αq
.

Thus, there exists V∗ < 0 such that

V(α) =

⎧⎪⎨
⎪⎩

−∞, 0 ≤ α < α∗,
V∗, α = α∗,
0, α > α∗.

Setting

α∗ := inf{α : V(α) = 0}, (71)

we have α∗ ≤ e2c and V(α∗)/ logα∗ ∈ N. When ec /∈ S2, we consider three cases, depending
on the sign of c − T ′(0):

1. We first assume that c > T ′(0). Let n be the number of elements in S1 that are equal to
ec , and set

ρ = lim
q→+∞

ρ(q)

ecq
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(by Lemma 5 the limit exists and is finite). If p(z, q) is the characteristic polynomial of
the matrix A(qη), we have p(ρ(q), q) = 0 and thus

0 = lim
q→+∞

p(ρ(q), q)

e3cq
= ρ3 − nρ.

Hence ρ = √
n ≥ 1. We can show in a straightforward manner that

V(e2c) = lim
q→+∞

[
2ρ3(q) + e3cq

ρ(q)e2cq
T ′(q) − 3ce3cq

ρ(q)e2cq

]
=

(
2ρ2 + 1

ρ
− 3

ρ

)
c = 2c

ρ3 − 1

ρ
.

Therefore,

V(α) =

⎧⎪⎨
⎪⎩

∞, 0 ≤ α < e2c,

2c(ρ3 − 1)/ρ, α = e2c,

0, α > e2c.

Since ρ = √
n we have α∗ = e2c , and V(α∗)/ logα∗ /∈ N.

2. The case when c = T ′(0) is analogous to the previous one and thus we omit the details.
In this case we can show that

V(α) =

⎧⎪⎨
⎪⎩

∞, 0 ≤ α < e2c,

2c(ρ3 − 2)/ρ, α = e2c,

0, α > e2c.

We have α∗ = e2c , and V(α∗)/ logα∗ /∈ N.
3. When c < T ′(0) we have

V(α) = lim
q→+∞

e(6T ′(0)−3c)q

ρecqαq
[T ′(q) − (6T ′(0) − 3c)].

Thus, α∗ = e6T ′(0)−4c > e2c , and

V(α) =

⎧⎪⎨
⎪⎩

∞, 0 ≤ α < α∗,
(4c − 6T ′(0))/ρ, α = α∗,
0, α > α∗.

To decide whether ec ∈ S2 we proceed as follows:

1. compute α∗ (see (71));
2. if α∗ > e2c , then ec /∈ S2;
3. If α∗ < e2c , then ec ∈ S2;
4. if α∗ = e2c and V(α∗)/ logα∗ ∈ N, then ec ∈ S2;
5. if α∗ = e2c and V(α∗)/ logα∗ 
∈ N, then ec /∈ S2.

A similar analysis to the previous one but for the function

V(α) = lim
q→−∞

[
(2ρ3(q) + e3cq + eκq)T ′(q)

ρ(q)αq
− 3ce3cq + κeκq

ρ(q)αq

]
,

where κ = 6T ′(0) − 3c, allows us to determine whether ec ∈ S2 or not.
We can now determine the sets S1 and S2. For S1 we proceed as follows:
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1. If ec ∈ S2 then:

(a) S2 = {ec, e2T ′(0)−c} and
√

α∗ occurs in S1 a number of times equal to V(α∗)/ logα∗.
If V(α∗)/ logα∗ = 3, then S1 = {√α∗}.

(b) If V(α∗)/logα∗ 
= 3, then we analyze the function

V1(α) = V(α) − lim
q→+∞

(
V(α∗)
logα∗ × logα∗(α∗)q

αq

)
.

Letting now α∗
1 = inf{α : V1(α) = 0} > 0 the number

√
α∗

1 occurs in S1 a number of
times equal to V1(α

∗
1)/logα∗

1 . Thus, if

V(α∗)
logα∗ + V1(α

∗
1)

logα∗
1

= 3, (72)

then the set S1 is determined.
(c) If (72) does not hold then we analyze the function

V2(α) = V1(α) − lim
q→+∞

(
V1(α

∗
1)

logα∗
1

× logα∗
1(α

∗
1)

q

αq

)
.

Letting α∗
2 = inf{α : V2(α) = 0} > 0 the number

√
α∗

2 is the missing element of S1,
i.e., S1 = {√α∗,

√
α∗

1 ,
√

α∗
2}.

2. If ec /∈ S2 and ec ∈ S2, then we proceed as in the previous case, with c and V playing
respectively the roles of c and V .

3. If ec /∈ S2 and ec /∈ S2, then

S1 = {ec, e3T ′(0)−c−c, ec}.
To determine S2 we analyze the function

W(α) = lim
q→+∞

[
3ρ3(q) − ρ(q)(e2cq + eγ q + e2cq)

αq
T ′(q) − ρ(q)

2ce2cq + γ eγq + 2ce2cq

αq

]
,

where γ = 6T ′(0) − 2c − 2c. By (69) we have

W(α) = lim
q→+∞

log(c12c23c31)(c12c23c31)
q + log(c13c32c21)(c13c32c21)

q

αq
.

Letting α∗ := inf{α : W(α) = 0} > 0, we obtain

S2 = { 3
√

α∗, 3
√

e2T ′(0)−logα∗ }.
This yields the desired result. �

We now complete the proof of the theorem. In view of (65) and (66), it follows from
Lemma 8 that from the function T , and thus from the spectrum E , we can determine the
sets S1 and S2 in (67) and (68). Therefore, we can also determine the sets

T1 = {α12, α13, α23α32} and T2 = {α12α23, α13α32}.
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Note that although we know these sets, we are not able to say which element of T2 corre-
sponds to α12α23.

Since α12 ≥ α13 ≥ α23α32, letting β1 = maxT1, β3 = minT1, and β2 the remaining ele-
ment of T1, the matrix associated to the function ϕ is of the form

(0 β1 β2

1 0 β3/x

1 x 0

)
for some x > 0.

Letting T2 = {γ1, γ2}, we find x from β2x = γ1 or β2x = γ2. We thus obtain two possible
matrices, namely A(ϕ) and A(ψ) in (51).

The case when we recover a unique equivalence class occurs when the elements of the
set T2 are equal, i.e., when α12α23 = α13α32. �
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